## Progress of Development and Design of DUCK (Detector of Unusual Cosmic-ray casKades)

#### APS March 2024 meeting

By: Gerald Harris\*, Dmitriy Beznosko, Shriya Chakraborti, Nicholas Muong





The start of Cosmic Ray Research • Victor Hess first discovered cosmic rays through a series of balloon experiments from 1911 to 1912. These experiments marked a significant milestone in our understanding of cosmic phenomena.



#### Extensive Air Showers and Delayed Particles

- From 1927 to 1929 Dmitri Vladimirovich Skobeltsyn discovered cosmic rays are high energy particles[1].
- Shortly after Pierre Auger concluded that these particles generated a cascading shower of particles.



obtained over the range  $(3-70) \times 10^{-8}$  second. This distribution could be represented by an exponential function with half of the delayed particles arriving within  $(10 \pm 2) \times 10^{-8}$  second. The total fraction of shower particles that suffer delays in the above range was found to be  $(0.85 \pm 0.05)\%$ .

There is evidence that showers with delayed events do not differ in average density from those without such events.

A control experiment was carried out to investigate any spurious effects; this revealed  $\mu$ -e decay events in the scintillator at approximately the expected rate.

#### §1. INTRODUCTION

I the particles in extensive air showers are penetrating, and further, that of this about three-quarters can be attributed to a non-interacting component (presumed to be  $\mu$ -mesons) and the remaining quarter to an interacting component (McCusker 1950). We shall henceforward denote the electronic, total penetrating, nucleonic and mesonic components by the symbols e, p, N and  $\mu$  respectively.

As soon as the presence of the p-component in the showers was demonstrated, it was realized by several workers that the particles composing it might be delayed with respect to the e-component. For if each type of particle has approximately the same average energy, the velocity of the lightest particles will approximate most closely to that of light. If, moreover, a distance of several kilometres, from the higher atmosphere to see level is traversed, the difference in time of arrival



#### **Previous Work Done**





- Horizon T
  - Similar system to DUCK with eight detection points
  - High altitude
  - Makes use of Hamamatsu R7723 PMT with a secondary trigger detector[2]

CREDO

- Global Collaboration
- Our system is scalable for potential large-scale deployment.

## Motivation for continued research in this area

- Discovery of what causes this delayed particle effect.
- Discovery of what are these particles.
- DUCK system aims to act as a verification of work from the Horizon T detector system
- Contribute to the CREDO collaboration
- Design with nanosecond time resolution for cosmic events
- Study of temporal structure of Extensive Air Showers

#### Simulation to Support Design



## **Initial Layout**





#### Equipment and Material Used

Hamamatsu Photomultiplier





Characterization of Photomultiplier tubes and "Paddles"

- Done to find the optimal voltages and thresholds for detecting cosmic events.
- Measured the log of frequencies and plotted them against the threshold and identified "plateaus" where the noise is reasonable, and detection is at its highest.

# Characterization of the Photomultiplier Tubes





# **Construction of Prototype Detector**





## **Current Setup**



- Data was collected and converted through the analog-todigital converter (ADC) into ROOT for data analysis.
- Example fit using Landau function in ROOT is shown



#### Drawbacks/ Challenges

Silicon Sensor displays limited range, needs WLS fiber as a possible fix

Noise from detector needs to be mitigated





# Future Considerations for Prototype

- Construction of 3D printed sensor stand for a PMT to improve mechanical strength.
- Reducing reflection of light within the detector housing to potentially mitigant noise.
- Inclusion of fiber optic attachment to MPPC sensor.



#### **Future Goals**

Four large detectors to form the DUCK System

Allows for scalability and mass deployment

Replicable with little cost for mass use in CREDO Collaboration
Confirm Results from Horizon - T

# Bibliography

[1] G. A. Bazilevskaya, "Skobeltsyn and the early years of cosmic particle physics in the Soviet Union," Astroparticle Physics, vol. 53, pp. 61–66, Jan. 2014, doi: <u>https://doi.org/10.1016/j.astropartphys.2013.05.007</u>.

[2] J.V. Jelly and W.J. Whitehouse, The Time Distribution of Delayed Particles in Extensive Air Showers using a Liquid Scintillation. Counter of Large Area, Proc. Physical Society A, 66, 5, pp. 454-466, 1953

[3] R. U. Beisembaev et al., "The Horizon-T cosmic ray experiment," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1037, p. 166901, Aug. 2022, doi: <u>https://doi.org/10.1016/j.nima.2022.166901</u>.

[4] D. Beznosko *et al.*, "Design Considerations of the DUCK Detector System," *Quantum Beam Science*, vol. 7, no. 1, p. 6, Mar. 2023, doi: <u>https://doi.org/10.3390/qubs7010006</u>.

[5] D Beznosko et al., "Horizon-T experiment and detection of Extensive air showers with unusual structure," Journal of Physics: Conference Series, vol. 1342, no. 1, pp. 012007–012007, Jan. 2020, doi: <u>https://doi.org/10.1088/1742-6596/1342/1/012007</u>.

Acknowledgement:

This work was funded by NSF LEAPS-MPS Grant Award 2316097